edexcel

Mark Scheme (Results)
Summer 2012

International GCSE
Chemistry (4CH0) Paper 1C Science Double Award (4SC0) Paper 1C

Edexcel Level 1/Level 2 Certificate

Chemistry (KCH0) Paper 1C
Science (Double Award) (KSC0) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UG031876
All the material in this publication is copyright
© Pearson Education Ltd 2012

Question number	Expected Answer	Accept	Reject	Marks
1 (b)	M1 wear (safety) glasses / spectacles / goggles / eye protection M2 salt / solution / water may spit out (when evaporating the salty water) / may get in your eye IGNORE references to hazards eg toxic / irritant OR M1 use (beaker) tongs / hot hand / (rigger/oven) glove(s) (to remove / lift the basin) M2 basin will / may be hot OR M1 tie hair back / tuck in tie M2 might catch fire (in Bunsen burner) the reason must match the precaution IGNORE references to wearing lab. coats / protective clothing	It leave basin (to cool) before removing to avoid burning hand	crucible tongs / plastic gloves	1 1
(c)	$(2.9 \times 2)=5.8(\mathrm{~g})$			1

Question number	Expected Answer	Accept	Reject	Marks
2 (a)	M1 calcium M2 magnesium	$\begin{array}{\|l\|} \hline \mathrm{Ca} \\ \mathrm{Mg} \end{array}$	any other answers	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	iron / zinc	$\mathrm{Fe} / \mathrm{Zn}$	any other answers	1
	calcium	Ca		3
	magnesium	Mg		
	zinc	Zn		
	copper			
	M1 for calcium as most reactive M2 for copper as least reactive M3 for remainder in correct order			
(b)	hydrogen / H_{2}		H	1
	all the (sulfuric) acid has reacted /all hydrogen (ions) have been replaced (by magnesium (ions)) OR acid has been used up/been neutralised / acid has run out IGNORE the acid is saturated / excess magnesium has been added	sulphuric for sulfuric hydrogen ions/ H^{+}for acid	all the magnesium / reactants used up	1
	magnesium sulfate (solution) IGNORE incorrect formula	sulphate for sulfate MgSO_{4}		1
	filtration / filter (it / magnesium / solution) / decantation / decant (off the water / solution) IGNORE references to distillation / centrifuging / washing / evaporation after filtration	description of filtration	sieve crystallisation	1

| 2 (c) (i) | exothermic | | 1 | |
| :---: | :---: | :--- | :--- | :--- | :---: |
| | (ii) | magnesium oxide
 IGNORE incorrect formula | | 1 |

Question number	Expected Answer	Accept	Reject	Marks
4 (a)	(increasing) atomic number(s) IGNORE references to electrons / electronic configurations	proton number / number of protons	mass number / RAM	1
(b) (i) (ii)	sodium / potassium fluorine / chlorine / bromine	$\begin{aligned} & \mathrm{Na} / \mathrm{K} \\ & \mathrm{~F} / \mathrm{Cl} / \mathrm{Br} / \mathrm{F}_{2} / \mathrm{Cl}_{2} / \mathrm{Br}_{2} \end{aligned}$	fluoride / chloride / bromide	1 1
(c) (i)	sodium OR potassium AND fluorine OR chlorine OR bromine OR hydrogen Answers can be in either order IGNORE incorrect symbols/formulae if names are correct Marks do not have to be CQ on (c)(i), and all marks can be scored here for correct diagrams of the ions in a hydrogen halide M1 Na or K with 8 electrons M2 F, Cl or Br with 8 electrons IGNORE diagrams showing initial electron configurations $\text { M3 }(1)+\underline{\text { AND }}(1)-\text { charges correct }$ IGNORE inner shells even if incorrect	Na / K $\mathrm{F} / \mathrm{Cl} / \mathrm{Br} / \mathrm{H} / \mathrm{F}_{2} / \mathrm{Cl}_{2} /$ $\mathrm{Br}_{2} / \mathrm{H}_{2}$ 0 electrons H with 2 electrons	fluoride / chloride / bromide / hydride Incorrect electron transfer for M1 and M2	1

Allow any combination of dots and crosses
If shown covalently bonded, then max. 1 for correct charges if given

If the position of 2 electrons shown between the two species makes it hard to be sure that the bonding is definitely ionic (and not covalent), do not award M1 or M2

$\begin{array}{l}\text { Question } \\ \text { number }\end{array}$	Expected Answer	Accept	Reject	Marks
4 (d)	$\begin{array}{l}\text { (fluorine reacts) vigorously / instantly / explosively / } \\ \text { violently / very quickly / very rapidly } \\ \text { IGNORE references to electron transfer, even if } \\ \text { incorrect } \\ \text { (to form) iron(III) fluoride }\end{array}$	$\begin{array}{l}\text { the quickest / more quickly } \\ \text { than chlorine }\end{array}$	$\begin{array}{l}\text { fluorine } \\ \text { reaction slower } \\ \text { than chlorine } \\ \text { reaction }\end{array}$	1

(e)	M1 colourless (IGNORE clear)	no colour	decolourised	1		
M2 orange / yellow / brown						
IGNORE qualifiers such as light / dark						
on left					\quad	any other
:---						
colour	$\quad 1$					
:---						

Question number	Expected Answer	Accept	Reject	Marks
5 (a)	$2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$ M1 all formulae correct (including catalyst if given) M2 correct balancing M2 DEP on M1 If catalyst included in equation, must be MnO_{2} on both sides IGNORE MnO_{2} above the arrow	$\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+1 / 2 \mathrm{O}_{2}$ multiples		2
(b)	relights a glowing spill IGNORE reference to popping	splint for spill smouldering/embering for glowing		1
(c)	M1 (rate) increases M2 provides an alternative pathway / route / mechanism (for the reaction) OR hydrogen peroxide) particles / molecules / reactant(s) adsorb (onto catalyst) M3 with a lower activation energy OR more particles / molecules have the (required) activation energy OR weakens the (covalent) bonds (in the hydrogen peroxide)	speeds up / goes faster / decreases time (for decomposition) lowers the activation energy by going a different way $=\mathrm{M} 2$ and M3 Absorb / sticks to / bonds to / provides a surface for particles / molecules / reactant(s) to react description of activation energy eg particles have enough energy to react	gives particles more kinetic energy for M2 and M3 atoms atoms	1 1 1 1

Question number	Expected Answer	Accept	Reject	Marks
$5 \quad \text { (d) } \quad \text { (i) }$ (ii)	M1 curve starting at origin and below original curve M2 levelling off at $30 \mathrm{~cm}^{3}(+/-0.5)$ and anywhere between 30s and 120s M1 curve starting at origin and above original curve M2 levelling off at $60 \mathrm{~cm}^{3}(+/-0.5)$ and before 80s if curves incorrectly labelled then penalise each curve 1 mark, so max. 2 for the question	curve reaching right vertical axis below $30 \mathrm{~cm}^{3}$ but still 'going up' both curves unlabelled		1 1 1

Question number	Expected Answer	Accept	Reject	Ma rks
6 (a)	M1 both protons $=6$ M2 C-13 has 7 and C-14 has 8 (neutrons)			1 1
(b)	same electronic configuration(s) / structure(s) OR same number of electrons OR have four/same number of electrons in outer / valence shell IGNORE same number of electrons in inner shells IGNORE references to atomic number / same number of protons / different number of neutrons	amount for number / six electrons	different number of protons	1
(c) (i)	M1 the average / mean mass of an atom (of the element) M2 compared to / relative to ($\left.1 / 12^{\text {th }}\right)$ the mass (of an atom) of carbon-12 OR M1 mass of one mole of atoms M2 compared to (mass of) $1 / 12^{\text {th }}$ one mole $/ 1 \mathrm{~g}$ of carbon-12	average/mean of: atomic masses / mass numbers / mass of isotopes on a scale where carbon-12 has a mass of 12 / compared with the mass of carbon-12 which is 12	mean mass of an element mass of one mole of the element	1 1

Question number	Expected Answer	Accept	Reject	$\begin{gathered} \hline \mathrm{Mar} \\ \mathrm{ks} \end{gathered}$
6 c (ii)	$\begin{aligned} & \text { M1 }(12 \times 98.9)+(13 \times 1.1) \\ & M 2 \div 100 \\ & \text { M3 } 12.01 \end{aligned}$ IGNORE units	(12 x 0.989) + (13 x 0.011) for first 2 marks 12.011 on its own for 2 marks 12.01 on its own for 3 marks		1 1 1

Question number	Expected Answer	Accept	Reject	Marks
7 (a) (i) (ii)	M1 contains carbon and hydrogen (atoms / elements / particles) M2 only M2 DEP on M1, but allow M2 if molecules / ions / mixture used in M1 $\mathrm{C}_{10} \mathrm{H}_{22}$ IGNORE structural formula	C and H for carbon and hydrogen other equivalent words, eg solely / entirely / completely $\mathrm{H}_{22} \mathrm{C}_{10}$	ions / carbon molecules / hydrogen molecules / H_{2} / mixture of C and H Reject superscripts / lower case c or h / full size numbers	1
(b) (i) (ii)	addition M1 one of the bonds in the double bond breaks M2 (many) ethene(s)/molecules/monomers join (together) OR (many) ethene(s)/molecules/monomers form a chain	```additional double bond breaks / double bond becomes single bond changes (from unsaturated) to saturated```		1 1 1 1

Question number	Expected Answer	Accept	Reject	Marks
7 (c)	Any 4 from: - produces smaller / shorter (chain) molecules - smaller / shorter (chain) molecules more useful (as fuels) / have greater demand - smaller / shorter (chain) molecules burn more cleanly / are used to make petrol/diesel/fuel for vehicles - crude oil richer in / has a surplus of long (chain) molecules - produces alkenes / any named alkene - alkenes used to make alcohol / polymers / plastics / chemical feedstock / any named addition polymer	ORA low(er) demand products converted to high(er) demand products ORA		4

Question number	Expected Answer	Accept	Reject	Marks
8 (a) (i) (ii)	diffusion ammonia because it moves further (in the same time) / ammonia moved 60 cm and hydrogen chloride moved 40 cm OR ammonia because (white) ring right of centre / ring is further from ammonia end / closer to HCl end Do not penalise atoms in place of molecules/ particles	reverse arguments ammonia has lower density / has lighter molecules / smaller M_{r} references to solutions IGNORE smaller molecules		$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(b)	M1 less than 5 mins / less time (for white ring to form) M2 particles / molecules have more (kinetic) energy M3 and particles/gas move(s) / diffuse faster IGNORE references to rate of reaction / more (successful/frequent) collisions Do not penalise atoms in place of molecules/particles	(forms more) quickly / sooner	gas has more energy	1 1 1

Question number	Expected Answ er	Accept	Reject
8 (c)	particles/molecules collide with air particles/molecules in air OR particles / molecules collide with one another / the wall (of the tube) Do not penalise collisions between ammonia and hydrogen chloride OR particles move in random direction / need many collisions (for white ring) to become visible l many particles of ammonium chloride must form (before white ring seen) Do not penalise atoms in place of molecules/ particles IGNORE references to time taken for evaporation to take place IGNORE references to time taken for reaction to take place		1

Question number	Expected Answ er	Accept	Reject	Marks
9 (a)	silicon dioxide is acidic	an acid	1	
	calcium oxide is basic / a base	calcium oxide is alkaline / an alkali If neither mark scored, award 1 mark for: reaction is neutralisation OR reaction is between an acid and a base/alkali (even if wrongly identified)	1	

Question number	Expected Answer	Accept	Reject	Marks
9 (b) (i)	M1 oxygen (atom)	more of them (n the diagram / structure)	oxygen molecule / O_{2} / oxide ion loxygen ion	1
	M2 forms two bonds / smaller atom / has valency of 2 IGNORE more (oxygen) in the formula M2 DEP on M1, although allow M2 if oxygen mentioned but M1 not awarded because of reference to molecule/ion/ O_{2}			1
	M1 giant (structure / lattice / atomic) IGNORE large / 3D	giant molecular / macromolecular		1
	M2 covalent			1
	M3 idea that covalent bonds are broken IGNORE bonds are loosened	overcome for broken		1
	M4 covalent bonds are strong / lots of energy required to break covalent bonds/ lots of heat required to break covalent bonds	$\begin{aligned} & \text { many bonds are broken }=\mathrm{M} 3 \\ & +\mathrm{M} 4 \end{aligned}$		1
	IGNORE high temperature needed			
	Do not penalise silicone			
	Max2 for mention of ionic or metallic bonding or intermolecular forces			

Question number	Expected Answer	Accept	Reject	Marks
10 (a) (i) (ii)	M1 $\mathrm{Na}(1.15 \div 23)=0.05(\mathrm{~mol})$ O $(0.80 \div 16)=0.05(\mathrm{~mol})$ Accept correct alternative working M2 ratio 1:1 M2 DEP on M1 $M 178 \div 39=2$ $\mathrm{M} 2 \mathrm{Na}_{2} \mathrm{O}_{2}$ Final answer scores 2	(moles are) the same/equal $39 \times 2=78 / 78$ is twice 39 $\begin{aligned} & 23 \times 2=46 \text { and } 16 \times 2=32 \\ & (=78) \end{aligned}$	division by atomic numbers division upside down for M1 and M2	1 1 1
(b) (i) (ii)	$\mathrm{Na}_{2} \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}_{2}$ M1 all formulae correct M2 correct balancing M2 DEP on M1 Hydroxide / $\mathrm{OH}^{-} / \mathrm{HO}^{-} /-\mathrm{OH}$	multiples and fractions equation csq on formula in (a)(ii), but Na and O must be in 1:1 ratio		2 1

Question number	Expected Answer	Accept	Reject	Marks
10 (b) (iii)	M1 two electrons between the oxygen atoms M2 all other electrons correct M2 DEP on M1 Allow any combination of dots and crosses			$\begin{aligned} & 1 \\ & 1 \end{aligned}$

Question number	Expected Answer	Accept	Reject	Marks
11 (a) (i) (ii)	potassium / K ${ }^{+}$ iron(II) $/ \mathrm{Fe}^{2+}$	K		1 1
(iii)	iodide / I -	I	iodine / I_{2}	1
(b)	M1 use a (clean platinum / nichrome) wire / glass rod / silica rod IGNORE references to hydrochloric acid M2 (to put) solid / solution / M in/over a flame/burner M3 flame as either blue/roaring/non- luminous/Bunsen/blow torch OR burner described Bunsen/blow torch no marks if solid is in a container, e.g. test tube/tray/beaker/basin	any method of introducing the solid into the flame, e.g. (wet) wooden spill / spatula / metal rod / tip or sprinkle in powder	any metal that will burn or melt in a flame (e.g. magnesium) or any metal that will colour the flame (e.g. copper) tongs / tweezers / (deflagrating) spoon flame	1

Question number	Expected Answer	Accept	Reject	Marks
11 (c) (i)	reacts with / removes carbonate (ions) OR remove ions/substances/impurities that (form a) precipitate (with silver ions / silver nitrate)	formula removes ions that give a positive result (with silver ions / silver nitrate)		1
(ii)	M1 (hydrochloric acid) contains chloride ions M2 which interfere with test / make silver chloride OR M1 forms a (white) precipitate M2 of silver chloride Do not award either mark if wrong chemistry described, eg redox reactions, formation of iodine	gives a (white) precipitate / (false) positive result	chlorine ions	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(d)	nitrate / $\mathrm{NO}_{3}-$ If both name and formula given, both must be correct			1

Question number	Expected Answer	Accept	Reject	Marks
12 (a)	$2 \mathrm{PbS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{PbO}+2 \mathrm{SO}_{2}$ M1 all formulae correct M2 correct balancing M2 DEP on M1 IGNORE state symbols	Multiples and fractions		2
(b) (i) (ii)	Reduced AND oxygen has been removed IGNORE It / PbO gains electrons Do not penalise molecules $\mathrm{M} 1 \mathrm{Mr}(\mathrm{PbO})=223$ (moles method) $\mathrm{M} 2 \mathrm{n}(\mathrm{PbO})=44.6 / 223(=0.2)$ M3 mass of $C=0.2 / 2 \times 12=1.2$ (mass ratio method) M2 446 require $12 / 44.6 \times \frac{12}{446}$ M3 44. 6 require 1.2 / 1.2 Calculations with and without use of 10^{6} are acceptable mark csq at each stage Correct final answer with or without working	arguments based on decrease in oxidation number of $\mathrm{Pb} /$ gain of electrons by $\mathrm{Pb}^{2+} /$ lead ions 446		1 1 1

Final answers that may score 2 are:

Question number	Expected Answer	Accept	Reject	Marks
12 (c) (i)	(silver is / it is) more soluble in zinc / less soluble in lead (ii) (it is) less than / equal to $530\left({ }^{\circ} \mathrm{C}\right)$	soluble in zinc but insoluble in lead	1 implication that Zn and Ag melting points are both less than or equal to $5300^{\circ} \mathrm{C}$	1

Question number	Expected Answer	Accept	Reject	Marks
13 (a) (i) (ii)	$\begin{array}{\|l} \hline 4.83(\mathrm{~g}) \\ 3.78(\mathrm{~g}) \end{array}$			$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(iii)	$\begin{aligned} & \mathrm{M} 1 n\left(\mathrm{ZnSO}_{4}\right)=4.83 \div 161 \quad /=0.03 \\ & \mathrm{M} 2 n\left(\mathrm{H}_{2} \mathrm{O}\right)=3.78 \div 18 \quad /=0.21 \\ & \mathrm{M} 3 \mathrm{x}=n\left(\mathrm{H}_{2} \mathrm{O}\right) \div n\left(\mathrm{ZnSO}_{4}\right)=7 \end{aligned}$ CSQ on (i) and (ii) Do not penalise non-integer values of x Correct final answer with no working = 1 Correct final answer with some correct working = 3	$\begin{aligned} & (18 x \div 161)=(3.78 \div 4.83) \\ & x=((3.78 \div 4.83) \times 161) \div 18 \\ & =7 \\ & \text { equivalent alternative calculations } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
(b)	to remove all the water NOT just to remove the water	to make sure the solid is anhydrous / fully dehydrated		1

Question number	Expected Answer	Accept	Reject	Marks
13 (c)	M1 anhydrous / white copper sulfate IGNORE crystals	anhydrous cobalt chloride / blue cobalt chloride (solid or paper) M2 turns blue if oxidation number of copper given, must be +2	if oxidation number of cobalt given, must be +2 copper sulfate turns from white to blue $=2$ cobalt chloride turns from blue to pink $=2$	1
M2 DEP on M1 correct or near miss				
IGNORE references to determining melting and/or boiling point, even if incorrect IGNORE references to acid/base indicators or UI, even if incorrect	dehydrated in place of anhydrous			

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code xxxxxxxx Summer 2012

Llywodraeth Cynulliad Cymru
Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

